LogoLogo
Continuum WebsiteContinuum ApplicationsContinuum KnowledgeAxolotl Platform
Continuum Knowledge
Continuum Knowledge
  • Continuum
  • Data
    • Datasets
      • Pre Training Data
      • Types of Fine Tuning
      • Self Instruct Paper
      • Self-Alignment with Instruction Backtranslation
      • Systematic Evaluation of Instruction-Tuned Large Language Models on Open Datasets
      • Instruction Tuning
      • Instruction Fine Tuning - Alpagasus
      • Less is More For Alignment
      • Enhanced Supervised Fine Tuning
      • Visualising Data using t-SNE
      • UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
      • Training and Evaluation Datasets
      • What is perplexity?
  • MODELS
    • Foundation Models
      • The leaderboard
      • Foundation Models
      • LLama 2 - Analysis
      • Analysis of Llama 3
      • Llama 3.1 series
      • Google Gemini 1.5
      • Platypus: Quick, Cheap, and Powerful Refinement of LLMs
      • Mixtral of Experts
      • Mixture-of-Agents (MoA)
      • Phi 1.5
        • Refining the Art of AI Training: A Deep Dive into Phi 1.5's Innovative Approach
      • Phi 2.0
      • Phi-3 Technical Report
  • Training
    • The Fine Tuning Process
      • Why fine tune?
        • Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
        • Explanations in Fine Tuning
      • Tokenization
        • Tokenization Is More Than Compression
        • Tokenization - SentencePiece
        • Tokenization explore
        • Tokenizer Choice For LLM Training: Negligible or Crucial?
        • Getting the most out of your tokenizer for pre-training and domain adaptation
        • TokenMonster
      • Parameter Efficient Fine Tuning
        • P-Tuning
          • The Power of Scale for Parameter-Efficient Prompt Tuning
        • Prefix-Tuning: Optimizing Continuous Prompts for Generation
        • Harnessing the Power of PEFT: A Smarter Approach to Fine-tuning Pre-trained Models
        • What is Low-Rank Adaptation (LoRA) - explained by the inventor
        • Low Rank Adaptation (Lora)
        • Practical Tips for Fine-tuning LMs Using LoRA (Low-Rank Adaptation)
        • QLORA: Efficient Finetuning of Quantized LLMs
        • Bits and Bytes
        • The Magic behind Qlora
        • Practical Guide to LoRA: Tips and Tricks for Effective Model Adaptation
        • The quantization constant
        • QLORA: Efficient Finetuning of Quantized Language Models
        • QLORA and Fine-Tuning of Quantized Language Models (LMs)
        • ReLoRA: High-Rank Training Through Low-Rank Updates
        • SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models
        • GaLora: Memory-Efficient LLM Training by Gradient Low-Rank Projection
      • Hyperparameters
        • Batch Size
        • Padding Tokens
        • Mixed precision training
        • FP8 Formats for Deep Learning
        • Floating Point Numbers
        • Batch Size and Model loss
        • Batch Normalisation
        • Rethinking Learning Rate Tuning in the Era of Language Models
        • Sample Packing
        • Gradient accumulation
        • A process for choosing the learning rate
        • Learning Rate Scheduler
        • Checkpoints
        • A Survey on Efficient Training of Transformers
        • Sequence Length Warmup
        • Understanding Training vs. Evaluation Data Splits
        • Cross-entropy loss
        • Weight Decay
        • Optimiser
        • Caching
      • Training Processes
        • Extending the context window
        • PyTorch Fully Sharded Data Parallel (FSDP)
        • Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
        • YaRN: Efficient Context Window Extension of Large Language Models
        • Sliding Window Attention
        • LongRoPE
        • Reinforcement Learning
        • An introduction to reinforcement learning
        • Reinforcement Learning from Human Feedback (RLHF)
        • Direct Preference Optimization: Your Language Model is Secretly a Reward Model
  • INFERENCE
    • Why is inference important?
      • Grouped Query Attention
      • Key Value Cache
      • Flash Attention
      • Flash Attention 2
      • StreamingLLM
      • Paged Attention and vLLM
      • TensorRT-LLM
      • Torchscript
      • NVIDIA L40S GPU
      • Triton Inference Server - Introduction
      • Triton Inference Server
      • FiDO: Fusion-in-Decoder optimised for stronger performance and faster inference
      • Is PUE a useful measure of data centre performance?
      • SLORA
  • KNOWLEDGE
    • Vector Databases
      • A Comprehensive Survey on Vector Databases
      • Vector database management systems: Fundamental concepts, use-cases, and current challenges
      • Using the Output Embedding to Improve Language Models
      • Decoding Sentence-BERT
      • ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
      • SimCSE: Simple Contrastive Learning of Sentence Embeddings
      • Questions Are All You Need to Train a Dense Passage Retriever
      • Improving Text Embeddings with Large Language Models
      • Massive Text Embedding Benchmark
      • RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
      • LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
      • Embedding and Fine-Tuning in Neural Language Models
      • Embedding Model Construction
      • Demystifying Embedding Spaces using Large Language Models
      • Fine-Tuning Llama for Multi-Stage Text Retrieval
      • Large Language Model Based Text Augmentation Enhanced Personality Detection Model
      • One Embedder, Any Task: Instruction-Finetuned Text Embeddings
      • Vector Databases are not the only solution
      • Knowledge Graphs
        • Harnessing Knowledge Graphs to Elevate AI: A Technical Exploration
        • Unifying Large Language Models and Knowledge Graphs: A Roadmap
      • Approximate Nearest Neighbor (ANN)
      • High Dimensional Data
      • Principal Component Analysis (PCA)
      • Vector Similarity Search - HNSW
      • FAISS (Facebook AI Similarity Search)
      • Unsupervised Dense Retrievers
    • Retrieval Augmented Generation
      • Retrieval-Augmented Generation for Large Language Models: A Survey
      • Fine-Tuning or Retrieval?
      • Revolutionising Information Retrieval: The Power of RAG in Language Models
      • A Survey on Retrieval-Augmented Text Generation
      • REALM: Retrieval-Augmented Language Model Pre-Training
      • Retrieve Anything To Augment Large Language Models
      • Generate Rather Than Retrieve: Large Language Models Are Strong Context Generators
      • Active Retrieval Augmented Generation
      • DSPy: LM Assertions: Enhancing Language Model Pipelines with Computational Constraints
      • DSPy: Compiling Declarative Language Model Calls
      • DSPy: In-Context Learning for Extreme Multi-Label Classification
      • Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs
      • HYDE: Revolutionising Search with Hypothetical Document Embeddings
      • Enhancing Recommender Systems with Large Language Model Reasoning Graphs
      • Retrieval Augmented Generation (RAG) versus fine tuning
      • RAFT: Adapting Language Model to Domain Specific RAG
      • Summarisation Methods and RAG
      • Lessons Learned on LLM RAG Solutions
      • Stanford: Retrieval Augmented Language Models
      • Overview of RAG Approaches with Vector Databases
      • Mastering Chunking in Retrieval-Augmented Generation (RAG) Systems
    • Semantic Routing
    • Resource Description Framework (RDF)
  • AGENTS
    • What is agency?
      • Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
      • Types of Agents
      • The risk of AI agency
      • Understanding Personality in Large Language Models: A New Frontier in AI Psychology
      • AI Agents - Reasoning, Planning, and Tool Calling
      • Personality and Brand
      • Agent Interaction via APIs
      • Bridging Minds and Machines: The Legacy of Newell, Shaw, and Simon
      • A Survey on Language Model based Autonomous Agents
      • Large Language Models as Agents
      • AI Reasoning: A Deep Dive into Chain-of-Thought Prompting
      • Enhancing AI Reasoning with Self-Taught Reasoner (STaR)
      • Exploring the Frontier of AI: The "Tree of Thoughts" Framework
      • Toolformer: Revolutionising Language Models with API Integration - An Analysis
      • TaskMatrix.AI: Bridging Foundational AI Models with Specialised Systems for Enhanced Task Completion
      • Unleashing the Power of LLMs in API Integration: The Rise of Gorilla
      • Andrew Ng's presentation on AI agents
      • Making AI accessible with Andrej Karpathy and Stephanie Zhan
  • Regulation and Ethics
    • Regulation and Ethics
      • Privacy
      • Detecting AI Generated content
      • Navigating the IP Maze in AI: The Convergence of Blockchain, Web 3.0, and LLMs
      • Adverse Reactions to generative AI
      • Navigating the Ethical Minefield: The Challenge of Security in Large Language Models
      • Navigating the Uncharted Waters: The Risks of Autonomous AI in Military Decision-Making
  • DISRUPTION
    • Data Architecture
      • What is a data pipeline?
      • What is Reverse ETL?
      • Unstructured Data and Generatve AI
      • Resource Description Framework (RDF)
      • Integrating generative AI with the Semantic Web
    • Search
      • BM25 - Search Engine Ranking Function
      • BERT as a reranking engine
      • BERT and Google
      • Generative Engine Optimisation (GEO)
      • Billion-scale similarity search with GPUs
      • FOLLOWIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions
      • Neural Collaborative Filtering
      • Federated Neural Collaborative Filtering
      • Latent Space versus Embedding Space
      • Improving Text Embeddings with Large Language Models
    • Recommendation Engines
      • On Interpretation and Measurement of Soft Attributes for Recommendation
      • A Survey on Large Language Models for Recommendation
      • Model driven recommendation systems
      • Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations
      • Foundation Models for Recommender Systems
      • Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review
      • AI driven recommendations - harming autonomy?
    • Logging
      • A Taxonomy of Anomalies in Log Data
      • Deeplog
      • LogBERT: Log Anomaly Detection via BERT
      • Experience Report: Deep Learning-based System Log Analysis for Anomaly Detection
      • Log-based Anomaly Detection with Deep Learning: How Far Are We?
      • Deep Learning for Anomaly Detection in Log Data: A Survey
      • LogGPT
      • Adaptive Semantic Gate Networks (ASGNet) for log-based anomaly diagnosis
  • Infrastructure
    • The modern data centre
      • Enhancing Data Centre Efficiency: Strategies to Improve PUE
      • TCO of NVIDIA GPUs and falling barriers to entry
      • Maximising GPU Utilisation with Kubernetes and NVIDIA GPU Operator
      • Data Centres
      • Liquid Cooling
    • Servers and Chips
      • The NVIDIA H100 GPU
      • NVIDIA H100 NVL
      • Lambda Hyperplane 8-H100
      • NVIDIA DGX Servers
      • NVIDIA DGX-2
      • NVIDIA DGX H-100 System
      • NVLink Switch
      • Tensor Cores
      • NVIDIA Grace Hopper Superchip
      • NVIDIA Grace CPU Superchip
      • NVIDIA GB200 NVL72
      • Hopper versus Blackwell
      • HGX: High-Performance GPU Platforms
      • ARM Chips
      • ARM versus x86
      • RISC versus CISC
      • Introduction to RISC-V
    • Networking and Connectivity
      • Infiniband versus Ethernet
      • NVIDIA Quantum InfiniBand
      • PCIe (Peripheral Component Interconnect Express)
      • NVIDIA ConnectX InfiniBand adapters
      • NVMe (Non-Volatile Memory Express)
      • NVMe over Fabrics (NVMe-oF)
      • NVIDIA Spectrum-X
      • NVIDIA GPUDirect
      • Evaluating Modern GPU Interconnect
      • Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)
      • Next-generation networking in AI environments
      • NVIDIA Collective Communications Library (NCCL)
    • Data and Memory
      • NVIDIA BlueField Data Processing Units (DPUs)
      • Remote Direct Memory Access (RDMA)
      • High Bandwidth Memory (HBM3)
      • Flash Memory
      • Model Requirements
      • Calculating GPU memory for serving LLMs
      • Transformer training costs
      • GPU Performance Optimisation
    • Libraries and Complements
      • NVIDIA Base Command
      • NVIDIA AI Enterprise
      • CUDA - NVIDIA GTC 2024 presentation
      • RAPIDs
      • RAFT
    • Vast Data Platform
      • Vast Datastore
      • Vast Database
      • Vast Data Engine
      • DASE (Disaggregated and Shared Everything)
      • Dremio and VAST Data
    • Storage
      • WEKA: A High-Performance Storage Solution for AI Workloads
      • Introduction to NVIDIA GPUDirect Storage (GDS)
        • GDS cuFile API
      • NVIDIA Magnum IO GPUDirect Storage (GDS)
      • Vectors in Memory
Powered by GitBook
LogoLogo

Continuum - Accelerated Artificial Intelligence

  • Continuum Website
  • Axolotl Platform

Copyright Continuum Labs - 2023

On this page

Was this helpful?

Embedding and fine-tuning are two essential concepts related to training neural language models (NLMs).

Embedding is a technique used to represent discrete variables, such as words or tokens, as continuous vectors in a high-dimensional space.

Embeddings capture the semantic and syntactic relationships between words, enabling neural language model to understand the meaning and context of text.

Embedding Layer

In neural language models, the embedding layer is responsible for mapping each input token to its corresponding embedding vector.

The embedding layer is typically the first layer in the model architecture and is initialised with pre-trained weights obtained from large-scale unsupervised learning tasks, such as language modeling.

The embedding layer works as follows

Tokenization: The input text is tokenized into a sequence of tokens that the pre-trained model can understand.

Embedding Lookup: Each token in the input sequence is passed through the embedding layer, which performs a lookup operation to retrieve the corresponding embedding vector. The embedding vectors are learned during the pre-training phase and capture general language knowledge.

Output: The output of the embedding layer is a sequence of embedding vectors, where each vector represents a token in the input sequence. These embeddings are then passed to the subsequent layers of the model for further processing.

Transformer Architecture

The Transformer relies heavily on the concept of self-attention, which allows the model to weigh the importance of different tokens in the input sequence when processing each token.

In the Transformer architecture, the embedding layer plays a crucial role:

Input Embedding: The input tokens are passed through the embedding layer to obtain their corresponding embedding vectors. These embeddings capture the semantic and syntactic information of the tokens.

Positional Encoding: Since the Transformer does not have any inherent notion of token order, positional encodings are added to the input embeddings. Positional encodings are fixed or learned vectors that encode the position of each token in the sequence, allowing the model to understand the relative position of tokens.

Self-Attention: The embeddings (with positional encodings) are then passed through the self-attention mechanism, which computes the attention scores between all pairs of tokens in the sequence. This allows the model to capture dependencies and relationships between tokens, regardless of their distance in the sequence.

Fine-Tuning: Fine-tuning is the process of adapting a pre-trained language model to a specific downstream task, such as sentiment analysis, named entity recognition, or text classification. During fine-tuning, the pre-trained model's parameters, including the embedding layer weights, are updated using a smaller task-specific dataset.

The fine-tuning process involves the following steps:

Tokenization: The input text for the downstream task is tokenized in the same way as during pre-training.

Embedding Lookup: The tokenized input is passed through the pre-trained embedding layer to obtain the corresponding embedding vectors. The embedding layer weights are initialised with the pre-trained values and are fine-tuned along with the rest of the model.

Task-Specific Layers: Additional layers, such as a classification head or a sequence-to-sequence layer, are added on top of the pre-trained model to adapt it to the specific downstream task.

Fine-Tuning: The entire model, including the embedding layer and task-specific layers, is fine-tuned using the task-specific dataset. The model's weights are updated to capture the nuances and patterns specific to the downstream task.

During fine-tuning, the embedding layer adapts the pre-trained embeddings to the target domain or task. The fine-tuned embeddings capture task-specific semantic and syntactic information, which helps the model perform better on the downstream task.

Conclusion

Embedding and fine-tuning are fundamental concepts in training neural language models.

The embedding layer is responsible for mapping input tokens to continuous vector representations, capturing semantic and syntactic relationships.

In the Transformer architecture, embeddings play a crucial role in the self-attention mechanism, enabling the model to understand dependencies between tokens.

Fine-tuning adapts a pre-trained model, including its embedding layer, to a specific downstream task. During fine-tuning, the embedding layer weights are updated along with the rest of the model to capture task-specific information.

Last updated 1 year ago

Was this helpful?

  • Embedding Layer
  • The embedding layer works as follows
  • Transformer Architecture
  • Conclusion
  1. KNOWLEDGE
  2. Vector Databases

Embedding and Fine-Tuning in Neural Language Models

Mathematical representations of text

PreviousLLM2Vec: Large Language Models Are Secretly Powerful Text EncodersNextEmbedding Model Construction
Page cover image