LogoLogo
Continuum WebsiteContinuum ApplicationsContinuum KnowledgeAxolotl Platform
Continuum Knowledge
Continuum Knowledge
  • Continuum
  • Data
    • Datasets
      • Pre Training Data
      • Types of Fine Tuning
      • Self Instruct Paper
      • Self-Alignment with Instruction Backtranslation
      • Systematic Evaluation of Instruction-Tuned Large Language Models on Open Datasets
      • Instruction Tuning
      • Instruction Fine Tuning - Alpagasus
      • Less is More For Alignment
      • Enhanced Supervised Fine Tuning
      • Visualising Data using t-SNE
      • UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
      • Training and Evaluation Datasets
      • What is perplexity?
  • MODELS
    • Foundation Models
      • The leaderboard
      • Foundation Models
      • LLama 2 - Analysis
      • Analysis of Llama 3
      • Llama 3.1 series
      • Google Gemini 1.5
      • Platypus: Quick, Cheap, and Powerful Refinement of LLMs
      • Mixtral of Experts
      • Mixture-of-Agents (MoA)
      • Phi 1.5
        • Refining the Art of AI Training: A Deep Dive into Phi 1.5's Innovative Approach
      • Phi 2.0
      • Phi-3 Technical Report
  • Training
    • The Fine Tuning Process
      • Why fine tune?
        • Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations?
        • Explanations in Fine Tuning
      • Tokenization
        • Tokenization Is More Than Compression
        • Tokenization - SentencePiece
        • Tokenization explore
        • Tokenizer Choice For LLM Training: Negligible or Crucial?
        • Getting the most out of your tokenizer for pre-training and domain adaptation
        • TokenMonster
      • Parameter Efficient Fine Tuning
        • P-Tuning
          • The Power of Scale for Parameter-Efficient Prompt Tuning
        • Prefix-Tuning: Optimizing Continuous Prompts for Generation
        • Harnessing the Power of PEFT: A Smarter Approach to Fine-tuning Pre-trained Models
        • What is Low-Rank Adaptation (LoRA) - explained by the inventor
        • Low Rank Adaptation (Lora)
        • Practical Tips for Fine-tuning LMs Using LoRA (Low-Rank Adaptation)
        • QLORA: Efficient Finetuning of Quantized LLMs
        • Bits and Bytes
        • The Magic behind Qlora
        • Practical Guide to LoRA: Tips and Tricks for Effective Model Adaptation
        • The quantization constant
        • QLORA: Efficient Finetuning of Quantized Language Models
        • QLORA and Fine-Tuning of Quantized Language Models (LMs)
        • ReLoRA: High-Rank Training Through Low-Rank Updates
        • SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models
        • GaLora: Memory-Efficient LLM Training by Gradient Low-Rank Projection
      • Hyperparameters
        • Batch Size
        • Padding Tokens
        • Mixed precision training
        • FP8 Formats for Deep Learning
        • Floating Point Numbers
        • Batch Size and Model loss
        • Batch Normalisation
        • Rethinking Learning Rate Tuning in the Era of Language Models
        • Sample Packing
        • Gradient accumulation
        • A process for choosing the learning rate
        • Learning Rate Scheduler
        • Checkpoints
        • A Survey on Efficient Training of Transformers
        • Sequence Length Warmup
        • Understanding Training vs. Evaluation Data Splits
        • Cross-entropy loss
        • Weight Decay
        • Optimiser
        • Caching
      • Training Processes
        • Extending the context window
        • PyTorch Fully Sharded Data Parallel (FSDP)
        • Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
        • YaRN: Efficient Context Window Extension of Large Language Models
        • Sliding Window Attention
        • LongRoPE
        • Reinforcement Learning
        • An introduction to reinforcement learning
        • Reinforcement Learning from Human Feedback (RLHF)
        • Direct Preference Optimization: Your Language Model is Secretly a Reward Model
  • INFERENCE
    • Why is inference important?
      • Grouped Query Attention
      • Key Value Cache
      • Flash Attention
      • Flash Attention 2
      • StreamingLLM
      • Paged Attention and vLLM
      • TensorRT-LLM
      • Torchscript
      • NVIDIA L40S GPU
      • Triton Inference Server - Introduction
      • Triton Inference Server
      • FiDO: Fusion-in-Decoder optimised for stronger performance and faster inference
      • Is PUE a useful measure of data centre performance?
      • SLORA
  • KNOWLEDGE
    • Vector Databases
      • A Comprehensive Survey on Vector Databases
      • Vector database management systems: Fundamental concepts, use-cases, and current challenges
      • Using the Output Embedding to Improve Language Models
      • Decoding Sentence-BERT
      • ColBERT: Efficient and Effective Passage Search via Contextualized Late Interaction over BERT
      • SimCSE: Simple Contrastive Learning of Sentence Embeddings
      • Questions Are All You Need to Train a Dense Passage Retriever
      • Improving Text Embeddings with Large Language Models
      • Massive Text Embedding Benchmark
      • RocketQAv2: A Joint Training Method for Dense Passage Retrieval and Passage Re-ranking
      • LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
      • Embedding and Fine-Tuning in Neural Language Models
      • Embedding Model Construction
      • Demystifying Embedding Spaces using Large Language Models
      • Fine-Tuning Llama for Multi-Stage Text Retrieval
      • Large Language Model Based Text Augmentation Enhanced Personality Detection Model
      • One Embedder, Any Task: Instruction-Finetuned Text Embeddings
      • Vector Databases are not the only solution
      • Knowledge Graphs
        • Harnessing Knowledge Graphs to Elevate AI: A Technical Exploration
        • Unifying Large Language Models and Knowledge Graphs: A Roadmap
      • Approximate Nearest Neighbor (ANN)
      • High Dimensional Data
      • Principal Component Analysis (PCA)
      • Vector Similarity Search - HNSW
      • FAISS (Facebook AI Similarity Search)
      • Unsupervised Dense Retrievers
    • Retrieval Augmented Generation
      • Retrieval-Augmented Generation for Large Language Models: A Survey
      • Fine-Tuning or Retrieval?
      • Revolutionising Information Retrieval: The Power of RAG in Language Models
      • A Survey on Retrieval-Augmented Text Generation
      • REALM: Retrieval-Augmented Language Model Pre-Training
      • Retrieve Anything To Augment Large Language Models
      • Generate Rather Than Retrieve: Large Language Models Are Strong Context Generators
      • Active Retrieval Augmented Generation
      • DSPy: LM Assertions: Enhancing Language Model Pipelines with Computational Constraints
      • DSPy: Compiling Declarative Language Model Calls
      • DSPy: In-Context Learning for Extreme Multi-Label Classification
      • Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs
      • HYDE: Revolutionising Search with Hypothetical Document Embeddings
      • Enhancing Recommender Systems with Large Language Model Reasoning Graphs
      • Retrieval Augmented Generation (RAG) versus fine tuning
      • RAFT: Adapting Language Model to Domain Specific RAG
      • Summarisation Methods and RAG
      • Lessons Learned on LLM RAG Solutions
      • Stanford: Retrieval Augmented Language Models
      • Overview of RAG Approaches with Vector Databases
      • Mastering Chunking in Retrieval-Augmented Generation (RAG) Systems
    • Semantic Routing
    • Resource Description Framework (RDF)
  • AGENTS
    • What is agency?
      • Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves
      • Types of Agents
      • The risk of AI agency
      • Understanding Personality in Large Language Models: A New Frontier in AI Psychology
      • AI Agents - Reasoning, Planning, and Tool Calling
      • Personality and Brand
      • Agent Interaction via APIs
      • Bridging Minds and Machines: The Legacy of Newell, Shaw, and Simon
      • A Survey on Language Model based Autonomous Agents
      • Large Language Models as Agents
      • AI Reasoning: A Deep Dive into Chain-of-Thought Prompting
      • Enhancing AI Reasoning with Self-Taught Reasoner (STaR)
      • Exploring the Frontier of AI: The "Tree of Thoughts" Framework
      • Toolformer: Revolutionising Language Models with API Integration - An Analysis
      • TaskMatrix.AI: Bridging Foundational AI Models with Specialised Systems for Enhanced Task Completion
      • Unleashing the Power of LLMs in API Integration: The Rise of Gorilla
      • Andrew Ng's presentation on AI agents
      • Making AI accessible with Andrej Karpathy and Stephanie Zhan
  • Regulation and Ethics
    • Regulation and Ethics
      • Privacy
      • Detecting AI Generated content
      • Navigating the IP Maze in AI: The Convergence of Blockchain, Web 3.0, and LLMs
      • Adverse Reactions to generative AI
      • Navigating the Ethical Minefield: The Challenge of Security in Large Language Models
      • Navigating the Uncharted Waters: The Risks of Autonomous AI in Military Decision-Making
  • DISRUPTION
    • Data Architecture
      • What is a data pipeline?
      • What is Reverse ETL?
      • Unstructured Data and Generatve AI
      • Resource Description Framework (RDF)
      • Integrating generative AI with the Semantic Web
    • Search
      • BM25 - Search Engine Ranking Function
      • BERT as a reranking engine
      • BERT and Google
      • Generative Engine Optimisation (GEO)
      • Billion-scale similarity search with GPUs
      • FOLLOWIR: Evaluating and Teaching Information Retrieval Models to Follow Instructions
      • Neural Collaborative Filtering
      • Federated Neural Collaborative Filtering
      • Latent Space versus Embedding Space
      • Improving Text Embeddings with Large Language Models
    • Recommendation Engines
      • On Interpretation and Measurement of Soft Attributes for Recommendation
      • A Survey on Large Language Models for Recommendation
      • Model driven recommendation systems
      • Recommender AI Agent: Integrating Large Language Models for Interactive Recommendations
      • Foundation Models for Recommender Systems
      • Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review
      • AI driven recommendations - harming autonomy?
    • Logging
      • A Taxonomy of Anomalies in Log Data
      • Deeplog
      • LogBERT: Log Anomaly Detection via BERT
      • Experience Report: Deep Learning-based System Log Analysis for Anomaly Detection
      • Log-based Anomaly Detection with Deep Learning: How Far Are We?
      • Deep Learning for Anomaly Detection in Log Data: A Survey
      • LogGPT
      • Adaptive Semantic Gate Networks (ASGNet) for log-based anomaly diagnosis
  • Infrastructure
    • The modern data centre
      • Enhancing Data Centre Efficiency: Strategies to Improve PUE
      • TCO of NVIDIA GPUs and falling barriers to entry
      • Maximising GPU Utilisation with Kubernetes and NVIDIA GPU Operator
      • Data Centres
      • Liquid Cooling
    • Servers and Chips
      • The NVIDIA H100 GPU
      • NVIDIA H100 NVL
      • Lambda Hyperplane 8-H100
      • NVIDIA DGX Servers
      • NVIDIA DGX-2
      • NVIDIA DGX H-100 System
      • NVLink Switch
      • Tensor Cores
      • NVIDIA Grace Hopper Superchip
      • NVIDIA Grace CPU Superchip
      • NVIDIA GB200 NVL72
      • Hopper versus Blackwell
      • HGX: High-Performance GPU Platforms
      • ARM Chips
      • ARM versus x86
      • RISC versus CISC
      • Introduction to RISC-V
    • Networking and Connectivity
      • Infiniband versus Ethernet
      • NVIDIA Quantum InfiniBand
      • PCIe (Peripheral Component Interconnect Express)
      • NVIDIA ConnectX InfiniBand adapters
      • NVMe (Non-Volatile Memory Express)
      • NVMe over Fabrics (NVMe-oF)
      • NVIDIA Spectrum-X
      • NVIDIA GPUDirect
      • Evaluating Modern GPU Interconnect
      • Scalable Hierarchical Aggregation and Reduction Protocol (SHARP)
      • Next-generation networking in AI environments
      • NVIDIA Collective Communications Library (NCCL)
    • Data and Memory
      • NVIDIA BlueField Data Processing Units (DPUs)
      • Remote Direct Memory Access (RDMA)
      • High Bandwidth Memory (HBM3)
      • Flash Memory
      • Model Requirements
      • Calculating GPU memory for serving LLMs
      • Transformer training costs
      • GPU Performance Optimisation
    • Libraries and Complements
      • NVIDIA Base Command
      • NVIDIA AI Enterprise
      • CUDA - NVIDIA GTC 2024 presentation
      • RAPIDs
      • RAFT
    • Vast Data Platform
      • Vast Datastore
      • Vast Database
      • Vast Data Engine
      • DASE (Disaggregated and Shared Everything)
      • Dremio and VAST Data
    • Storage
      • WEKA: A High-Performance Storage Solution for AI Workloads
      • Introduction to NVIDIA GPUDirect Storage (GDS)
        • GDS cuFile API
      • NVIDIA Magnum IO GPUDirect Storage (GDS)
      • Vectors in Memory
Powered by GitBook
LogoLogo

Continuum - Accelerated Artificial Intelligence

  • Continuum Website
  • Axolotl Platform

Copyright Continuum Labs - 2023

On this page
  • Summary of UMAP Paper
  • Difference between t-SNE and UMAP

Was this helpful?

  1. Data
  2. Datasets

UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

PreviousVisualising Data using t-SNENextTraining and Evaluation Datasets

Last updated 1 year ago

Was this helpful?

UMAP (Uniform Manifold Approximation and Projection) is another popular technique for dimensionality reduction and visualisation, similar to t-SNE (t-Distributed Stochastic Neighbor Embedding).

This highly cited September 2020 paper introduced UMAP (Uniform Manifold Approximation and Projection), a novel manifold learning technique for dimension reduction that builds upon theoretical foundations in Riemannian geometry and algebraic topology.

Summary of UMAP Paper

Introduction and Motivation

UMAP is described as a scalable algorithm applicable to real-world data across various fields, with a particular emphasis on handling large datasets more efficiently than existing methods like t-SNE.

UMAP is presented as a robust, general-purpose dimension reduction technique that not only excels in visualisation quality comparable to t-SNE but also offers superior runtime performance and flexibility in handling higher-dimensional embeddings.

Theoretical Background

The core of UMAP's methodology is grounded in a sophisticated mathematical framework involving Riemannian geometry and category theory, specifically leveraging the geometric realization of fuzzy simplicial sets.

This approach allows UMAP to effectively maintain both local and global data structures, which is a significant advantage over methods that may only preserve one at the expense of the other.

Algorithm Details

UMAP’s algorithm is designed to approximate a high-dimensional manifold using a low-dimensional projection.

It emphasizes the preservation of local structures through a process that initially estimates how data points are interconnected in high-dimensional space and then optimally projects these points onto a lower-dimensional space.

Practical Implementation

The paper discusses the implementation details of UMAP, including algorithmic steps and the impact of various hyperparameters.

This section is crucial for practitioners who need to understand how to apply UMAP effectively to real datasets and how to tune it to achieve the best performance.

Performance Evaluation

UMAP is evaluated against other dimension reduction techniques, demonstrating its effectiveness through practical results on real-world datasets.

These comparisons highlight UMAP's efficiency in scaling to large datasets and its ability to produce high-quality visualizations.

Discussion of Limitations and Extensions

The paper concludes with a discussion on the relative weaknesses of UMAP and scenarios where it might not be the optimal choice.

It also explores potential extensions of the algorithm, such as applications in semi-supervised learning, metric learning, and heterogeneous data embedding, suggesting avenues for future research and development.

Contributions and Theoretical Justifications

One of the primary contributions of this work is reframing dimension reduction and manifold learning problems within a new mathematical language, providing a fresh perspective that enhances theoretical understanding and practical application.

Conclusion

Overall, the UMAP paper presents a significant advancement in the field of dimension reduction, offering a method that balances the preservation of local and global structures with computational efficiency. Its robust theoretical underpinnings and practical effectiveness make it a valuable tool for data scientists and researchers working with complex high-dimensional data.

Difference between t-SNE and UMAP

Both are used to visualise complex high-dimensional data in a lower-dimensional space (typically two or three dimensions). However, they differ in several key aspects:

Theoretical Foundations

  • t-SNE: Focuses on preserving the local structure of the data and tends to form tighter clusters than UMAP. It uses a probability distribution based on Gaussian distributions in the high-dimensional space and a Student-t distribution in the low-dimensional space to model the relationships between points.

  • UMAP: Based on a mathematical framework from topology and algebraic geometry, UMAP uses concepts from Riemannian geometry and algebraic topology to project data. It approximates a high-dimensional manifold using a fuzzy topological structure and then uses graph layout algorithms to structure data in low dimensions.

Performance and Scalability

  • t-SNE: Known for its ability to create visually appealing maps that reveal structure at many different scales. It is computationally intensive, especially as the size of the dataset grows, which can make it less scalable for very large datasets.

  • UMAP: Often faster than t-SNE and scales better to larger datasets. UMAP's performance makes it suitable for larger datasets where t-SNE might struggle both in terms of computational resources and runtime.

Flexibility and Generalisation

  • t-SNE: Has a primary focus on visualization and does not inherently support new data points (out-of-sample data) without retraining the whole model.

  • UMAP: More flexible in general usage beyond visualization, such as in clustering, data preprocessing, and even semi-supervised learning tasks. UMAP can handle new (out-of-sample) data without needing to retrain the model, which is a significant advantage in dynamic datasets.

Visualization Quality

  • t-SNE: Excellent at revealing local data structures and relationships in the dataset. It is particularly good at separating clusters clearly, which makes it highly effective for exploratory data analysis.

  • UMAP: Also produces high-quality visualisations but tends to preserve more of the global structure compared to t-SNE. This can make UMAP more useful in cases where understanding the overall data structure is as important as understanding local groupings.

Parameters and Stability

  • t-SNE: The results can be quite sensitive to the choice of perplexity and other hyperparameters. Different runs can sometimes yield different visualizations, which may require some tweaking to get consistent results.

  • UMAP: Generally more robust to the choice of its parameters. While it still requires parameter tuning (like the number of neighbours), it typically provides more consistent results across different runs than t-SNE.

In summary, UMAP tends to be faster, more scalable, and versatile for a broader range of tasks beyond just visualisation, compared to t-SNE.

However, t-SNE may still be preferred when the primary goal is to explore the local structure of the data with high granularity, especially in smaller datasets.

UMAP: Uniform Manifold Approximation and Projection for Dimension ReductionarXiv.org
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Logo
Page cover image